

Swami Shraddhanand College (University of Delhi) Alipur, Delhi- 1100036

www.ss.du.ac.in

Lesson Plan

Name of Teacher	Prof. Bhoopander Giri (1 class/week) Dr. Bhawna Saxena (1 class/week)	Department	Botany	
Course	B.Sc. (H) Botany	Semester	ш	
Paper	Genetic and Plant Breeding	Academic Year	2023-2024	
Learning Objectives				
 To apprise students with the basic principles of Genetics To enhance the applications of genetics in plant breeding and agriculture. 				
Learning Outcomes				
The Learning Outcomes of this course are as follows:				
 understand the fundamentals of Mendelian inheritance and its deviation in gene interactions. 				
 describe the concepts of linkage and crossing over and their usage in constructing gene maps. 				

- become familiar with pedigree analysis.
- learn about principles of population genetics
- gain knowledge about gene mutations and inherited disorders
- learn about various plant breeding techniques / methods

Week No.	Theme/ Curriculum	
1. Week 1 (16 st -20 th Aug 23)	Orientation	
2. Week 2 (21 st -27 th Aug 23)	Unit 1. Mendelian Genetics Mendelism: History; Principles of inheritance (numerical) (Prof. Bhoopander Giri)	
	Unit 2. Extra-Nuclear Inheritance Chloroplast and mitochondrial genomes (Semi-autonomous nature of genomes) (Dr. Bhawna Saxena)	
3. Week 3 (28 th -3 rd Sept 23)	Unit 1. Mendelian Genetics Mendelism: deviations [Incomplete dominance (Mirabilis flower color) and codominance (MN Blood groups)] (Prof. Bhoopander Giri)	
	Unit 2. Extra-Nuclear Inheritance Chloroplast Inheritance: Variegation in Four O`clock plant; Mitochondrial inheritance in yeast; Maternal effect (Shell coiling in Snails). (Dr. Bhawna Saxena)	
4. Week 4 (4 th -10 th Sept 23)	Unit 1. Mendelian Genetics Chromosome theory of inheritance (points of parallelism); Multiple allelism (ABO blood groups) (Prof. Bhoopander Giri)	
	Unit 3. Linkage, crossing over and chromosome mapping Linkage and crossing over (Discovery: Bateson & Punnett crosses in sweet pea) (Dr. Bhawna Saxena)	
5. Week 5	Unit 1. Mendelian Genetics	
(11 th -17 th Sept 23)	lethal alleles (dominant lethal – Huntington's disease and recessive lethal Yellow coat color in mice)-(Prof. Bhoopander Giri)	

	Unit 3. Linkage, crossing over and chromosome mapping Linkage and crossing over (explain crossing over using Morgan's two factor crosses - Black body & Vestigial wings, Complete Linkage, Incomplete
	Linkage) (Dr. Bhawna Saxena)
6. Week 6	Unit I. Mendelian
(18 th -24 th Sept 23)	Epistasis (all 6 gene interactions); Pleiotropy (definition, example PKU) (Prof. Bhoopander Giri)
	Unit 3. Linkage, crossing over and chromosome mapping Cytological basis of crossing over (Creighton and McClintock experiment in Maize) (Dr. Bhawna Saxena)
7. Week 7	Unit 1. Mendelian Genetics
(25 th -1 th Oct 23)	Penetrance and expressivity (definitions, differences, one example: polydactyly) (Prof. Bhoopander Giri)
	Unit 3. Linkage, crossing over and chromosome mapping three factor crosses; interference and coincidence. (Dr. Bhawna Saxena)
8. Week 8	Unit 1. Mendelian Genetics
(2 nd -8 th oct 23)	Polygenic inheritance (Nilsson-Ehle's crosses, definition, examples – skin colour, height, fruit weight; numericals) (Prof. Bhoopander Giri)
	Unit 3. Linkage, crossing over and chromosome mapping
	Sex linkage (Morgan's Red & White eye crosses in Drosophila). (Dr. Bhawna Saxena)
9. Week 9	Unit 1. Mendelian Genetics
(9 th -15 th oct 23)	brief introduction to sex determination (Introduction to XX/XO in insects for discovery and XX/XY mechanism in human and Drososphila briefly, explain Barr body as consequence of Dosage Compensation) (Prof. Bhoopander Giri)
	Unit 5 Mutations
	Mutation types [spontaneous / induced somatic / germina]
	Biochemical, lethal, silent point (missense, non-sense, substitution, addition, deletion / indel, frameshift)] (Dr. Bhawna Saxena)
10. Week 10	Unit 4. Variation in Chromosome number and structure
(16 th -22th Oct 23)	Deletion; Duplication; Inversion (Prof. Bhoopander Giri)
	Unit 5 Mutations
	Muller's CIB method. Molecular basis of mutations (Tautomerism.
	Transitions, Transversions) Chemical mutagens (Base analogs,

	deaminating, hydroxylating, alkylating and intercalating agents) and Physical mutagens (Ionising and Non ionising radiations)(Dr. Bhawna Saxena)
11. Week 11	
the second	Unit 4. Variation in Chromosome number and structure
(23th -29 th Oct 23)	Translocation (Definition, mechanism and one example) (Prof. Bhoopander Giri)
	Unit 5. Mutations Transposable genetic elements and their significance (Definition, how TEs cause mutations, examples of Transposons in different organisms, (Dr. Bhawna Saxena)
12. Week 12	Unit 4 Variation in Chromosome number and structure
(30 th -5 th Nov 23)	Translocation (Definition, mechanism and one example) (Prof. Bhoopander Giri)
	Unit 5. Mutations
	Types - copy-paste, cut paste, one example of Barbara McClintock, Ac- Ds Elements - Maize kernel color to explain the mechanism. (Dr. Bhawna Saxena)
13. Week 13	Unit 4. Variation in Chromosome number and structure
(6 th -12 th Nov 23)	Euploidy and aneuploidy (In Brief) (Prof. Bhoopander Giri)
	Unit 6. Population and evolutionary genetics Hardy Weinberg law (Allele frequencies, genotype frequencies) (Dr. Bhawna Saxena)
14. Week 14	
(13 th -19 th Nov 23)	Unit 7. Plant Breeding
	Plant breeding- Principle and Practices, domestication and plant introduction (primary and secondary introduction) (Pof. Bhoopander Giri)
	Unit 6. Population and evolutionary genetics

	Hardy Weinberg law numericals based on it (Dr. Bhawna Saxena)
15. Week 15	Unit 7. Plant Breeding
(20 th -26 th Nov 23)	selection and its types: pure line selection, mass selection and clonal selection (Prof. Bhoopander Giri)
	Unit 6. Population and evolutionary genetics
	Speciation - sympatric & allopatric speciation, (modes of speciation and genetics of speciation). (Dr. Bhawna Saxena)
16. Week 16	Unit 7. Plant Breeding
(27 th -3 rd Dec 23)	hybridizations (inter-specific and intra-specific with examples in cultivated crops: Origin of Triticum aestivum, Raphanobrassica/Rabbage, 4x and 6x Triticale, Gossypium hirsutum (amphidiploid New World cotton) (Prof. Bhoopander Giri)
	Revision-(Dr. Bhawna Saxena)
17. Week 17	Unit 7. Plant Breeding
(4 th -6 th Dec 23)	heterosis and its significance (Definition of heterosis and its advantages/significance) (Prof. Bhoopander Giri)
	Revision-(Dr. Bhawna Saxena)
	Suggested Readings
Books	Suggested Readings:
	1. Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, 8 th edition. New Delhi, Delhi: John Wiley & sons.
	2. Griffiths, A.J.F., Doebley,J., Peichel, C, Wassarman D (2020). Introduction to Genetic Analysis, 12th edition. New York, NY: W.H. Freeman and Co.
	3. Klug, W.S., Cummings, M.R., Spencer, C.A. (2020). Concepts of Genetics, 12 th edition. San Francisco, California: Benjamin Cummings.

	4. Pierce, B. A. (2020). Genetics: A Conceptual Approach, 7th Edition,
	Macmillan
	5. Campbell, N.A., Reece J.B., Urry L.A., Cain M.L., Wasserman S.A., Minorsky
	P.V., Jackson, R.B. (2020). Biology. San Francisco, SF: Pearson Benjamin
	Cummings.
	6. Singh, B.D., (2022). Plant Breeding: Principles and Methods. New Delhi,
	Medtech
	Publishers
	Publishers
	Additional Resources:
	1. Russell. P. J. (2010). Genetics- A Molecular Approach. 3rd Edition.
	Benjamin Cummings
	2. Snustad, D.P., Simmons, M.J. (2016). Principles of Genetics, 7th Edition.
	New Delhi, Delhi: John Wiley & sons
	2 Harth D.L. Duwala M. (2010). Constitute Analysis of Canad and Conserves
	3. Harti, D.L., Ruvolo, M. (2019). Genetics: Analysis of Genes and Genomes,
	9" edition, Jones and Bartlett Learning.
	4 Singh B D (2023) Fundamentals of Genetics 6th edition MedTech
Assignment and Class Test Schedule for Semester	

Assignments: Submission by 30th October 2023

Class Test: As per the College mid-semester exam schedule